
The LearnLib in FMICS-jETI

Martin Leucker
Institut für Informatik

TU München
München, Germany
leucker@in.tum.de

Tiziana Margaria
Chair of Services and
Software Engineering,
University of Potsdam,

margaria@cs.uni-potsdam.de

Harald Raffelt, Bernhard Steffen
Chair of Programming Systems

University of Dortmund, Germany
harald.raffelt@cs.uni-dortmund.de

steffen@cs.uni-dortmund.de

Abstract

This paper explains

1 Introduction

One of the goals of FMICS, the ERCIM Working Group
on Formal Methods for Industrial Critical Systems (FMICS)
[?], is to transfer and promote the use formal methods tech-
nology in industry. The ongoing Verified Software Initiative
Grand Challenge [?] offers a great opportunity to reach this
goal, resulting in a more robust and solid software industry
in Europe. The FMICS-jETI platform1 concretizes the col-
lective effort of the FMICS WG by offering a collaborative
demonstrator of the FMICS techniques and tools based on
the jETI technology2. FMICS-jETI provides as repository a
collection of verification tools stemming from the activities
of the FMICS working group and facilities to orchestrate
them in a remote and simple way. At the same time FMICS-
jETI itself is a contribution to the VSI repository and thus
to the Grand Challenge.

The FMICS community develops since its inception
methods, tools, and their applications to industrial critical
systems. Our point of view thus stresses correctness at the
model level, rather than at the software (more generally at
the coding) level. An adequate repository should there-
fore contain not only analyzed or proven correct software,
but principally tools (themselves software artifacts) that
help establishing the correctness of the software in question
starting from the requirements, specifications, and models.
We are convinced that this perspective on modelling tools
and even frameworks can be useful for the progress towards
better software also for less critical application domains,
like consumer IT products: they strike wherever time to
market and first time correct are an issue.

1http:jeti.cs.uni-dortmund.de/fmics/index.php.
2jabc.cs.uni-dortmund.de/plugins/jeti en.html.

Based on jETI [?], the new generation of ETI [?, ?], the
core FMICS partners have set up a collaborative demonstra-
tor that

• illustrates the applicability of the jETI technology for
lightweight remote integration of tools into the reposi-
tory

• shows how to provide tools to the repository, by regis-
tration and remote provision,

• demonstrates how to experiment with local and remote
tools to solve cooperative verification tasks

• shows how to orchestrate different tools (possibly a
mix of local and remote ones) which were not origi-
nally designed to cooperate, to address more complex
case studies. This may require the availability of me-
diators, to cover semantic gaps between the tools.

It has been applied so far mostly to include verification
tools based on model checking techniques, like GEAR by
U. Dortmund/U. Potsdam [?], [?], and for applications of
model checking to dataflow analysis, as in [?, ?] the and it
is under application also for parallel model checking [?]

In this paper, we show how to extend the scope of the
FMICS-jETI platform in three new directions that address
the integration of heterogeneous and legacy tools and tech-
nologies. We are in fact integrating

• testing, as a technology - via our preexisting ITE plat-
form [?] for model-based testing,

• CORBA as a platform for integration

• active model learning technologies, via the Learn-
Lib [?] as a model extrapolation technique that uses
the ITE to explore a black box system and CORBA as
a communication mechanism, and

• third party applications built on top of the LearnLib, in
this case Smyle [?], a tool that synthesizes design mod-
els by learning from examples which uses the Learn-
Lib as learner.

These tools and techniques have been successfully used
before outside the jETI technology. We are currently us-
ing this case study as a blueprint for guidelines on how to
bring CORBA-compliant tools and complex, comunicating
applications into (FMICS-)jETI.

In the following, we first present the current and the
jETI-based architecture (in Sect. ??), then we recall the es-
sential description of the jABC/jETI platform (in Sect. ??),
before detailing on the ongoing integration of CORBA as
interface description language (in Sect. ??). We then briefly
present the LearnLib (in Sect. ??) and Smyle (in Sect. ??)
from the point of view of a typical FMICS-jETI user. We
finally conclude in Sect. ??.

Acknowledgements: We thank Benedikt Bollig, Joost-
Pieter Katoen, and Carten Kern for many useful comments
on Smyle [5].

2 jABC/jETI

The jABC framework [16, 1] is an environment for
model-driven service orchestration based on lightweight
process coordination. It has been used over the past 12 years
for business process and service logic modelling in several
application domains, including telecommunications, bioin-
formatics, supply chain management, e-commerce, collab-
orative decision support systems, as well as for software
and system development. In this paper, we restrict us to
the jABC facilities relevant to orchestration of an learning
approach for synthesizing design models from example sce-
narios that are given as message sequence charts.

In jABC, orchestration and choreography of services
happen on the basis of the processes they realize in the
respective application domain. These processes embody
the business logics, and are expressed themselves as (ex-
ecutable) process models.

Semantically, jABC models are control flow graphs with
fork/join parallelism, internally interpreted as Kripke Tran-
sition Systems [24]. This provides a kernel for a sound
semantical basis for description formalisms like BPNM,
BPEL, UML activity diagrams, and dataflow graphs, and
constitutes a lingua franca adequate for the analysis and
verification of properties, e.g. by model checking [24].
BPNM and BPEL are considered different syntactic (visual)
means for representing jABC models tailored for specific
communities of users. In this context, we chose to privilege
the abstract semantic view of the executable models over
”syntactic” sugar, and therefore use only the jABC notation.

A service orchestration is largely generated automati-
cally. The jETI framework (Java Electronic Tool Integra-
tion) [17, 32, 3] enhances the jABC to support seamless in-
tegration of remote services such as SOAP based web ser-
vices [18] and CORBA applications [27]. An essential ad-
don of the jETI framework is its ability to generate basic

service types (called SIBs, Service Independent Building
Blocks) from service interface descriptions.

• WDSL (Web Services Description Language) in case
of SOAP bases web services, and

• IDL (Interface Definition Language) in case of
CORBA applications

SIBs represent the atomic functionality of an involved
service. Within jABC, domain-specific SIB palettes are
shareable among projects, and organized in a project-
specific structure and with project-specific terminology.
This is a simple way for adopting or adapting to different
ontologies within the same application domain. Domain-
specific SIB palettes are complemented by a library of SIBs
that offer basic functionality (e.g. SIBs for I/O or memory
handling), control structures (as used here) or handling of
data structures like matrices (e.g. in our previous bioinfor-
matics applications [21]).

3 jETI Architecture Overview

jETI’s tool integration philosophy addresses the major
obstacle for a wider adoption, as identified during seven
years of experience with tool providers, tool users and stu-
dents: the difficulty to provide the latest versions of the
state-of-the-art tools. Any tool integration process required
on dedicated repository servers is too complicated for both
the tool providers and the repository’s support and main-
tenance team, making it impossible to keep pace with the
development of new versions and a wealth of new tools.
jETI’s service-based remote integration philosophy over-
comes this problems, because it replaces the requirement
of ”physical” tool integration by very simple registration
and publishing. This allows the provisioning of tool func-
tionalities in a matter of minutes: fast enough to be fully
demonstrated during our presentation. Moreover, whenever
the portion of a tool’s API which is relevant for a new ver-
sion of a functionality remains unchanged, version updating
is fully automatic!

The realisation of this registration / publishing approach
based on integration philosophy consists of tree leading ac-
tors as depicted in Fig. 1.

The jETI Tool Provider is the base of jETI approach.
jETI supports tool providers in offering tools and services
of various kinds. Besides web services and CORBA ap-
plications, which can be integrated using their native inter-
faces, jETI supports command line tools. In order to offer
command line tool as remote services jETI comprises

• a Tool Configurator, which allows tool providers to
register a new tool functionality just by filling our a
simple template form, and

2

jETI User Client

jETI Plugin

jABC

jETI Tool Provider
ProviderUser

jETI Server

jETI XML Tool Description

Web Service

WSDL Interface Description

CORBA Application

IDL Interface Description

jETI Management

jETI SIB Repository

SOAP
synchronize

SOAP

IIOP

Figure 1. jETI Architecture

• a Tool Executor, which is able to steer the execution of
the specified tools at the tool providers’ site.

The jETI Component Server manages all the registered
tool functionalities, including the corresponding version
control. It also automatically generates appropriate jABC
proxies from the interface definitions of registered tool. In
the jABC context these proxies are called service indepen-
dent building block (SIB). They represent atomic function-
alities whereby complex applications can be composed. For
the future, the component server is also intended to manage
jETI users by means of authentication, authorisation, and
accounting.

The jETI User Client loads the SIBs from the jETI Com-
ponent Server and provides a flexible service development
environment for orchestrating the tool functionalities. De-
pending on their goals and skill profile, users may just use
the graphical coordination editor to experiment with the
tools, or use the full support of his favourite integrated de-
velopment environment (IDE) to really embed remote func-
tionalities into normal programs.

3.1 Integration of CORBA Applications

Using CORBA applications inside the jETI client re-
quires a valid IDL only file. IDL files comprise interface

descriptions that specify of a set of possible operations a
client may request through that interface. An interface pro-
vides a syntactic description of how a service is accessed
via this set of operations. An example of an interface de-
scription is depicted in Fig. 2.

module learnlib {
interface DFAObservationTable {
void init(
in unsigned long sigmaSize,
out DFAQueryTree queries

) raises (OutOfMemory) ;

/* some more methods */
};

};

Figure 2. CORBA Interface Defintion

jETI’s SIB generator extracts the information about the
interfaces and operations a CORBA application provides,
and creates SIB accordingly. Since a SIB represents an
atomic functionality, one SIB is generated for each oper-
ation. CORBA operations are similar to methods in object
oriented programming languages. The may have input and
output parameters, a return value, and they can throw excep-
tions for signaling error conditions. Parameters, as well as
the return value, are handled as hierarchical SIB parameters:
they enable the user to freely define where to store input and
output values for the CORBA service, using the preexisting

3

graphical user interface of the jABC. Fig. 3 shows the jABC
view to the generated SIB.

Just as to call a method the invocation of CORBA oper-
ations requires an object that covers the state of the service.
Therefor the SIB has an additional parameter: the reference
to the object (servant).

Figure 3. jABC-View to the generated SIB

Exceptions are used change the normal flow of exe-
cution, therefor CORBA exceptions are mapped to SIB
branches which steer the control flow in the jABC. Note that
in the example the SIB has three branches. The ”default”
branch indicates normal execution of the service, the ”Out-
OfMemory” branch represents the exception defined in the
interface, and the ”error” branch is used to cover all other
failures, such as network communication problems. The
complete source of the generated SIB is depicted in 4.

Currently the implementation does not analyze the IDL
files directly. It first uses a standard tool to generate a Java
client library and then analyzes that library in order to ex-
tract relevant information to generate the SIBs. This way
the approach can easily be adapted to other remote invo-
cation protocols such as RMI and SOAP. The disadvantage
is, that it is not possible to transfer any API documentation
from the IDL files into the SIB documentation.

3.2 Choreography

jABC originated in the context of the verification of dis-
tributed systems [24], therefore SLGs are inherently ade-
quate as choreography models. The SIBs can physically
run in a distributed architecture. They communicate directly
or with a shared space (called the context). The SLGs are
fully hierarchical: SIBs can themselves be implemented via
SLGs. The macro mechanism described in [?] allows defin-
ing what communication actions of an SLG are visible to
the environment (for choreography). Orchestration is as far

public class DFAObservationTable_Init
implements Executable
{
public final String[] BRANCHES = {

SIB.DEFAULT,
SIB.ERROR,
"OutOfMemory"

};

public ContextElement servantRef;
public ContextElement sigmaSizeRef;
public ContextElement queriesRef;

public String trace(ExecEnvironment env)
{

DFAObservationTableOperations servant;
Integer sigmaSize;
DFAQueryTreeHolder queries;

// fetch input parameters
servant=(DFAObservationTableOperations)
env.get(servantRef);

sigmaSize=(Integer)
env.get(sigmaSizeRef);

// prepare output parameter
queries = new DFAQueryTreeHolder();

// invoke the remote servant
try {
servant.init(sigmaSize, queries);

} catch (OutOfMemory e) {
return "OutOfMemory";

}

// store the output parameters
env.put(queriesRef, queries.value);
return SIB.DEFAULT;

}

Figure 4. SIB Source

as the jABC is concerned just a degenerate case of choreog-
raphy.

3.3 Data Semantics

The static data semantics is captured automatically dur-
ing the IDL-to-SIB import as the SIB parameters.

These parameters, additional semantic properties at-
tached to the SIBs, possibly imported from an ontology, and
the SIB branch labels are visible to the model checker [16],
which allows automatically proving global compliance con-
straints on the business logic of an SLG. These constraints
are expressible in mu-calculus and its derivatives, a family
of modal (temporal) logics.

Additionally, arbitrary relations between data elements
can be provided as local checking expressions, with the ex-
pressiveness of Java. This facility allows expressing and
checking pre and post conditions.

4

4. LearnLib

4.1 Classical Automata Learning

Machine learning deals in general with the problem of
how to automatically generate system descriptions. Besides
the synthesis of static soft- and hardware properties, in par-
ticular invariants [13], [25], [8], the field of automata learn-
ing, also called regular extrapolation [15] or regular infer-
ence [12], is of particular interest for soft- and hardware
engineering [11], [23], [35], [28], [10].

We have used automata learning techniques in a number
of contexts, e.g. to automatically construct models of Web
applications as demonstrated in [29] and to enhance incom-
plete specifications of biological systems [20].

Automata learning tries to construct a deterministic finite
automaton that matches the behavior of a given target au-
tomaton on the basis of observations of the target automaton
and perhaps some further information on its internal struc-
ture. The interested reader may refer to [15, 31, 33] for our
view on the use of learning. Here we only summarize the
basic aspects of our realization, which is based on Angluin’s
learning algorithm L∗ from [2].

Definition A deterministic finite automaton (DFA) is a tu-
ple M = (S, s0,Σ, δ, F) where

• S is a finite nonempty set of states,

• s0 ∈ S is the initial state,

• Σ is a finite alphabet,

• δ : S × Σ → S is the transition function, and

• F ⊆ S is the set of accepting states.

Intuitively, a DFA evolves through states s ∈ S, and when-
ever one applies an input symbol (or action) a ∈ Σ, the
machine moves to a new state according to δ (s, a). A word
q ∈ Σ∗ is accepted by the DFA if and only if the DFA
reaches an accepting state si ∈ F after processing the word
starting from its initial state.

L∗, also referred to as an active learning algorithm,
learns deterministic finite automata by actively posing mem-
bership queries and equivalence queries to the target au-
tomaton in order to extract behavioral information, and by
refining successively an own hypothesis automaton based
on the answers. A membership query tests whether a string
(a potential run) is contained in the target automaton’s lan-
guage (its set of runs), and an equivalence query compares
the hypothesis automaton with the target automaton for lan-
guage equivalence, in order to determine whether the learn-
ing procedure was (already) successfully completed. In this
case the experimentation can stop.

In its basic form, L* starts with the one state hypothesis au-
tomaton that treats all words over the considered alphabet
(of elementary observations) alike and refines this automa-
ton on the basis of query results iterating two steps. Here,
the dual way of how L* characterizes (and distinguishes)
states is central:

• from below, by words reaching them. This characteri-
zation is too fine, as different words may well lead to
the same state.

• from above, by their future behavior wrt. a dynami-
cally increasing set of words. These future behaviors
are essentially bit vectors, where a ’1’ means that the
corresponding word of the set is guaranteed to lead
to an accepting state and a ’0’ captures the comple-
ment. This characterization is typically too coarse, as
the considered sets of words are typically rather small.

The second characterization directly defines the hypothesis
automata: each occurring bit vector corresponds to one state
in the hypothesis automaton.

The initial hypothesis automaton is characterized by the
outcome of the membership query for the empty observa-
tion. Thus it accepts any word in case the empty word is in
the language, and no word otherwise. The learning proce-
dure (1) iteratively establishes local consistency, after which
it (2) checks for global equivalence.

Local Consistency This first step (also referred to as au-
tomatic model completion) again iterates two phases: one
for checking wether the constructed automaton is closed un-
der the one-step transitions, i.e., each transition from each
state of the hypothesis automaton ends in a well defined
state of this very automaton. And one for checking con-
sistency according to the bit vectors characterizing the fu-
ture behavior as explained above, i.e., whether all reaching
words with an identical characterization from above pos-
sess the same one step transitions. If this is not the case,
a distinguishing transition is taken as an additional distin-
guishing future in order to resolve the inconsistency, i.e.,
the two reaching words with different transition potential
are no longer considered to represent the same state.

Global Equivalence After local consistency has been es-
tablished, an equivalence query checks whether the lan-
guage of the hypothesis automaton coincides with the lan-
guage of the target automaton. If this is true, the learning
procedure successfully terminates. Otherwise the equiva-
lence query returns a counterexample, i.e., a word which
distinguishes the hypothesis and the target automaton. This
counterexample gives rise to a new cycle of modifying the
hypothesis automaton and starting the next iteration.

5

In any practical attempt of learning legacy systems, the
equivalence tests can only be approximated, but member-
ship queries can be answered by testing the target systems
[15, 31].

LearnLib is a library of tools for automata learning. It
is implemented in C++ and tested under Linux and So-
laris, and it currently consists of 150 classes and almost
50.000 lines of code. Originally, LearnLib has been de-
signed to systematically build finite state machine models
of real world systems. In the meantime, it also became
a platform for experimenting with different learning algo-
rithms and to statistically analyze their characteristics in
terms of learning effort, run time and memory consumption.
As shown in Fig. 5, LearnLib consists of three libraries:

• The automata learning library contains the basic learn-
ing algorithms,

• the filter library provides several strategies to reduce
the number of queries, and

• the approximative equivalence queries library is based
on the generation of conformance test suites for the
conjectures of the learning algorithms.

4.2 Analysis and Profiling of Learning Al-
gorithms

Dieser Abschnitt sollte stark gekrzt werden.

Different learning algorithms have different profiles:
they differ in the way they proceed to gain structured knowl-
edge about an unknown system. Mostly they differ in the
number of membership- and equivalence queries, but also
in the size of their queries. In order to analyze these differ-
ences and to find out more about how learning algorithms
perform in practice we have built a configurator platform
and a profiling tool, which allow us to experiment with sev-
eral learning algorithms and configurations and to collect
statistics about their performance under controlled and re-
producible experimental conditions. The graphical user in-
terface of the configurator is shown in Fig ?? in a configura-
tion similar to the one we used in [22] to analyze second or-
der effects among optimizations (described in detail in Sec.
5.1).

A LearnLib configuration is similar to a data flow graph:
It specifies how the membership- and equivalence queries
generated by one of the LearnLib learning algorithms are
passed through other components of the LearnLib, for ex-
ample through optimization filters. Considering Fig ??, on
top of the graph the DFA Angluin node executes Angluin’s

Figure 5. LearnLib: Components and Appli-
cations

6

algorithm in the DFA version. All the membership queries
(MQ) it generates are passed to the (here 6) filter configura-
tions, whose efficiency and performance we want to inves-
tigate.

To this aim, the DFA fork component forwards copies of
the queries to six different filter combinations, which elimi-
nate redundancies according to several criteria, as described
in detail in Sec. ??. Finally, the queries which could not
be filtered are passed to the system under test for execu-
tion by the DFA SUT Simulator. This way we analyze the
comparative impact of the individual filters while learning a
certain model.

For studying the generic behavior of the filters, automati-
cally generated models are most appropriate as they provide
us with any required number of example systems. More-
over, the Learnlib allows us to generate models of a par-
ticular profile, concerning e.g. the number of accepting or
rejecting states, the branching degree, or language features
like prefix closure.

5 Automata Learning with the LearnLib

The main library of the LearnLib contains several vari-
ants of Angluin’s algorithm. Angluin assumes an omni-
scient oracle (called teacher), which answers to the follow-
ing two kinds of questions (as explained in Sect. 4):

• Membership queries ask whether a certain word is ac-
cepted by the finite state machine. This kind of query
can be directly answered for real systems via testing.

• Equivalence queries ask for checking whether the cur-
rent conjecture is (already) equivalent to the finite state
machine. These queries should be answered either
with Yes or a counter example.

Equivalence queries for ‘black box’ finite state machines
are in general undecidable. Thus one has to live with ap-
proximations like e.g. variations of conformance testing, as
shown in Fig. 5(right) which lists the conformance testing
routines currently available in the LearnLib.

The following two sections describe the two modes offered
by the LearnLib to flexibly deal with the wealth of avail-
able options: a pre-configuration mode (PC-Mode), which
allows the user to pre-configure an optimized learning set-
ting (see Sec. 5.1), and a learning process modelling mode
(LPM-Mode), which enable the user to control the entire
learning process, comprising the context-specific choice of
optimizations, strategies of search, as well as the setting
of interaction points for a truly interactive learning process
(see Sec. 5.2).

Learn-
Alg.

while(cannot build model)

do-while(not equivalent)

user Filter 1

EQ

MQ

learn

EQ

MQ
MQ

*[O(n3)] // MQEQ

MQ

Filter n Conf.
Filter SUT

Figure 6. Pre-Configuration Mode

5.1 Pre-Configuration Mode

Dieser Abschnitt sollte stark gekrzt werden.

In the PC-mode the user graphically specifies a config-
uration that defines a number of LearnLib experiments car-
ried out in parallel in terms of the chosen learning algo-
rithm, its global selection strategy for membership queries,
and the experiment-specific choices of filter chains.

Fig. ?? shows the use of the LearnLib as integrated tool
to the jABC environment [16]. As we see, a configura-
tion is a data flow graph-like structure which describes how
membership- and equivalence queries are passed through
components of the LearnLib. This is done by combining
the functionalities of the library of components, shown in
the upper left frame, to configurations in the canvas on the
right. The user of the LearnLib can combine

• a learning algorithm

• a directed acyclic graph of query filters, to take advan-
tage of structural knowledge about the system,

• a general strategy how to select membership queries,
and

7

• an interface to a system under test

Configuration design is done, in the usual jABC style, by
dragging library components to the canvas, and then con-
necting them by edges that specify how queries are passed
and how the library components should interact. Addition-
ally each component may have parameters, which are set via
the inspector in the lower left panel. In Fig. ?? the parame-
ters of the framed upper left independence filter are shown
in the lower left panel, which currently indicates that action
2 is independent with actions 4, 5, and 6. The independence
filter, described in detail in Section ??, is applicable when
the system contains pairs of independent actions.

Currently the user can choose between Angluin’s method
for learning DFAs [2] and our version for learning Mealy
machines [33]. To take advantage of knowledge about the
analyzed system’s structure, the user can specify a chain
of filters, discussed in detail in Sect. ??, which are used to
reduce the number of membership- and equivalence queries
to the oracle (resp. the system under test). The chain of
filters must terminate with an oracle or a system under test
interface, which answers all unfiltered queries.

Additionally, the user can choose a general strategy of
how membership queries are selected, which steers the al-
gorithm either in a more depth or more breadth oriented
way. This is particularly interesting in the context of en-
forcing consistency and closedness, where one typically has
a variety of options (see also Sect. ??). The available strate-
gies so far are

• random: choose randomly,

• fast: take the first possible alternative,

• long: prefer alternatives leading to long membership
queries,

• short: prefer alternatives leading to short membership
queries,

• cheap: prefer alternatives producing membership
queries that can be answered by the chain of filters,
and

• expensive: prefer alternatives which produce member-
ship queries that require the membership oracle.

In general the pre-configuration mode of the learn
algorithms work as depicted in Fig. 6. An inner loop
continues to generate and ask membership queries until
the algorithm is able to build a valid hypothesis model.
All these membership queries are sent through the chain
of filters in order to suppress redundant queries. Queries
remaining unfiltered are passed to the membership oracle.
This either leads to a direct check (in case of the simulation
mode, where the target model is known), or to a test run of

the target system (this is the way membership queries are
answered in our real life scenarios).

Whenever the learning algorithm has collected enough
information to build a valid hypothesis model, this model is
subject to an equivalence query, the bottleneck of the learn-
ing procedure. Except for the case of simulation, where
the target model is known, we have to approximate equiv-
alence queries by means of membership queries. Particu-
larly suitable are here methods adopted from conformance
testing (see Sect. 5.3). They help to systematically search
for distinguishing execution traces by means of testing, i.e.,
by posing appropriate membership queries. Thus our filters
can also be applied here.

As soon as one of the membership queries detects a dis-
crepancy, the corresponding trace is given to the learning
algorithm as a counterexample to improve the hypothesis
model, and the next iteration of the learning algorithms be-
gins. This continues until the (approximate) equivalence
oracle returns TRUE, signaling that we successfully learned
the target system.

5.2 Learning Process Modelling-Mode

Dieser Abschnitt sollte stark gekrzt werden. Der
Screenshot LearnLib-Interactive wird berarbeitet und
an den Smyle Demo-Case angepasst. Mit Anderen
Worten: Im ScreenShot wird der Hypothetische Smyle-
Prozess dargestellt.
Nach dem Abschnitt Smyle wird diese Abbildung
eingefgt und erklhrt Schrittweise den Process Modeling
Mode, die Remote komponente und den smyle prozess.
Ein groteil dieses Abschnittes kommt also erst zum
Ende des Papers.

In the LPM-Mode graphs, which are constructed just as
in the PC-Mode, are used to model the entire learning pro-
cess, which comprises the modelling of conditional or in-
teractive behaviour. The nodes may now represent arbitrary
statements, in particular including all atomic functionalities
of the LearnLib, and the edges specify in which order and
under which condition they are processed.

Fig. 9 depicts the control flow graph of a simple variation
of Angluin’s algorithm: here, the execution starts with con-
necting the graphical user interface to the LearnLib Con-
nectToLearnLib, before an interface to a system under test
is created CreatreSUInterface. The SUT interface can be
linked to a real system, but it can also represent a SUT sim-
ulator, which uses known models stored in a database. This
means that a SUT interface can represent a number of sys-

8

tems of very different kind. Therefore in the next step it
is checked whether there is a next SUT that should be ana-
lyzed (HasNextSubject).

After this first initialization steps the learning process
is started by initializing Angluin’s algorithm L∗ [2]. The
learning algorithm now generates a test suite, which must
be executed by the SUT interface in the next step. The
QueryTestCase component executes the traces contained in
the test suite and records the response of the SUT. At this
point the SUT interface may discover that the implemen-
tation offers more possibilities to be stimulated than cur-
rently specified. For example, a new input action may have
arisen. This happens for example when learning web ap-
plications, since every new discovered web page leads to a
new action for directly requesting that page. This special
feature is handled by the two components connected to the
sizeChanged branch. First the results of querying the SUT
are stored in the learning algorithm and then the alphabet
is updated. Afterwards the results of querying the SUT are
returned as a basis for a user decision UserInteraction about
the order of the two well-formedness checks CheckClosure)
and (CheckConsistency. If the observations are both closed
and consistent, L∗ constructs a conjecture model, which
is done in GetConjecture, otherwise the learning algorithm
provides a new test suite and the main loop continues.

After the main loop, the conjecture can be visualised
(DrawMealyModelGraph) and stored to a file (SaveGraph),
before one enters the check for global equivalence. In this
example this is done by generating and then executing a test
suite (CheckTestcases) according to the Wp-Method [14].
If the conjecture does not conform to the SUT, a counter
example is returned, and the learning algorithm continues.
Otherwise L∗ successfully terminates this learning task and
continues with the next SUT (HasNextSubject).

The execution of this control flow graph can be interac-
tively steered using the Tracer, which is able to execute
these control flow graphs. In addition it provides useful de-
bugging functionalities, which allow users to investigate the
data exchanged between the nodes resp. atomic functional-
ities. This way the user can visualize at any time the sets
of membership queries and intermediate finite state mod-
els generated by the learning process. It is also possible to
automatically generate a stand-alone Java program which
realizes the specified learning process.

Compared with the PC-mode, the interactive version
provides more control on how the learning algorithm pro-
ceeds. Like in the PC-mode, learning happens in two alter-
nating phases: constructing hypothesis automata and check-
ing their equivalence with the target automaton. These
phases alternate until the equivalence check, which is typ-
ically done via some version of conformance testing, is
passed. The user however remains in control: at any time he
may change the kind of filters used or decide which one of

the proposed membership queries should be executed next.
During the first phase this typically happens in five suc-

cessive steps:

1. Ask the learning algorithm to build a set of member-
ship queries which are required for the learning pro-
cess. For Angluin’s algorithms there are two con-
straints which must hold before a hypothesis model is
built: closedness and consistency (details can be found
[2]). Closedness and consistency are also established
via membership queries. In the LPM-mode, the user
may influence the order in which membership queries
are posed in order to accelerate the convergence.

2. Decide which filters should be used to filter out irrele-
vant queries. Chaining of filters is also supported.

3. Send the remaining membership queries to the oracle,
which gives the missing answers.

4. Update the filters according to the gained information.

5. Analyze the result of the membership queries given to
the learning algorithm, and decide where to continue
the iteration.

This loop continues until the learn algorithm is able to con-
struct a hypothesis model for the real system. Now the
LearnLib user can use this conjecture for an equivalence
query. This is only directly possible in the simulation case,
where the target model is known. Otherwise, one typi-
cally approximates the equivalence queries by membership
queries. Thus we may also profit from the filters here. The
LPM-Mode supports this by

• allowing to choose specific sets of filters, which may
be able to directly produce a counterexample on the
basis of the structural assumptions, or

• to translate the conjecture into a (contex-specific) ap-
proximating conformance test.

In addition, at any time the user might present the Learn-
Lib with particular execution traces, which he assumes to
differentiate the current hypothesis model form the target
system. This may drastically reduce the required number of
equivalence queries, the true bottleneck of automata learn-
ing.

5.3 Equivalence Queries in the LearnLib

As mentioned before, it is impossible to decide equiva-
lence queries if one is restricted to observe the input/output
behavior of an unknown system. Therefore one has to resort
to approximations of equivalence queries. It turns out that

9

user

while(cannot build model)

do-while(not equivalent)

find counter example

*[O(n3)] //membership query

build conformance test

equivalence query

equivalence query

get conjecture

analyze MQ set

answer MQ set

analyze MQ set

analyze MQ set

answer MQ set

answer MQ set

get MQ set

Learn-
Alg. Filter 1 Filter n Conf.

Filter
SUT

Figure 7. Learning Process Modeling Execu-
tion Model

methods from the field of conformance testing are particu-
larly adequate to approximate equivalence queries [4].

The problem of conformance testing can be briefly de-
scribed as follows [19]. Given

• a finite state machine MS , which acts as known speci-
fication, and

• a black-box implementation MI (typically represent-
ing just another finite state machine), providing testing
capabilities only,

one wants to determine by testing whether MI correctly im-
plements or, as we say, conforms to MS .

Of course also this problem is in general undecidable, but
there are a number of practically relevant approaches, some
of which, under certain circumstances, like e.g. restriction
of the number of states of the black box implementation, are
even complete.

Due to the restricted setting, the proposed alternatives
only differ in the set of tests they produce. Thus confor-
mance testing is closely related to test generation. Besides
basic test suite generation algorithms like state cover set
and transition cover set, the current version of the Learn-
Lib supports also the W-Method [9] and the Wp-Method
[14]. More advanced conformance test methods like the
UIO-method [30] and the UIOv-method [34] are currently
under development.

Wie werden Aequivalenz Queries in Smyle beachtet?

6. Smyle

Smyle, which stands for Synthesizing Models by
Learning from Examples, is a tool for synthesizing design
models by learning from example scenarios that are given
as message sequence charts.

The elicitation of requirements is the main initial phase
in the typical software engineering development cycle. A
plethora of elicitation techniques for requirement engineer-
ing exist. Popular requirement engineering methods, such
as the Inquiry Cycle and CREWS [26], exploit use cases and
scenarios to specify the system’s requirements. Sequence
diagrams are also at the heart of the UML. A scenario is
a partial fragment of the system’s behavior, describing the
system components, their message exchange and concur-
rency. Their intuitive yet formal nature has resulted in a
broad acceptance. Scenarios can be either positive or nega-
tive, indicating a possible desired or unwanted system be-
havior, respectively. Different scenarios together form a
more complete description of the system behavior.

10

The following design phase in software engineering is
a major challenge as it is concerned with a paradigm shift
between the requirement specification—a partial, overlap-
ping and possibly inconsistent description of the system’s
behavior—and a conforming design model, a complete be-
havioral description of the system (at a high level of abstrac-
tion). During the synthesis of such design models, usually
automata-based models that are focused on intra-agent com-
munication, conflicting requirements will be detected and
need to be resolved. Typical resulting changes to require-
ments specifications include adding or deleting scenarios,
and fixing errors that are found by a thorough analysis (e.g.,
model checking) of the design model. Obtaining a complete
and consistent set of requirements together with a related
design model is thus a highly iterative process.

The Smyle modelling approach (SMA, for short) is a
novel methodology that is an important stepping stone to-
wards bridging the gap between scenario-based requirement
specifications and design models. The novel aspect of our
approach is to exploit learning algorithms for the synthesis
of design models from scenario-based specifications. Since
message-passing automata (MPA, for short) [7] are a com-
monly used model to realize the behavior as described by
scenarios, we adopt MPA as design model.

The technical heart of SMA is a procedure that interac-
tively infers an MPA from a given set of positive and nega-
tive scenarios of the system’s behavior provided as message
sequence charts (MSCs). This is achieved by generalizing
Angluin’s learning algorithm for deterministic finite-state
automata (DFA) (see Section ??) towards specific classes of
bounded MPA, i.e., MPA that can be used to realize MSCs
with channels of finite capacity. Details can be found in [5].

An important distinctive aspect of SMA is that it natu-
rally supports the incremental generation of design models.
Learning of initial sets of scenarios is feasible. On adding
or deletion of scenarios, MPA are adapted accordingly in
an automated manner. Thus, synthesis phases and analy-
sis phases, supported by simulation or analysis tools such
as MSCan [6], complement each other in a natural fashion.
Furthermore, on establishing the inconsistency of a set of
scenarios, our approach mechanically provides diagnostic
feedback (in the form of a counterexample) that can guide
the engineer to evolve his requirements.

The SMA in detail Initially the user is asked to specify
the learning setup. After having selected a language type
(existentially/universally) and a channel bound B, the user
provides a set of MSCs. These MSC specifications must
then be divided into positive (i.e., MSCs contained in the
language to learn) and negative (i.e., MSCs not contained
in the language to learn). After submitting these examples,
all linearizations are checked for consistency with respect
to the properties of the learning setup. Violating lineariza-

tions are stored as negative examples. Now the learning
algorithm starts. The Learner continuously communicates
with the Assistant in order to gain answers to membership
queries. This procedure halts as soon as a query cannot be
answered by the Assistant. In this case, the Assistant for-
wards the inquiry to the user, displaying the MSC in ques-
tion on the screen. The user must classify the message se-
quence chart as positive or negative (cf. Fig. 8 (1)).

The Assistant checks the classification for validity wrt.
the learning setup. Depending on the outcome of this check,
the linearizations of the current MSC are assigned to the
positive or negative set of future queries. Moreover, the
user’s answer is passed to the Learner which then contin-
ues his question-and-answer game with the Assistant. If
the LearnLib proposes a possible automaton, the Assis-
tant checks whether the learned model is consistent with all
queries that have been categorized but not yet been asked.
If she encounters a counter-example, she presents it to the
learning algorithm which, in turn, continues the learning
procedure until the next possible solution is found. In case
there is no further evidence for contradicting samples, a new
frame appears (cf. Fig. 8 (2,3)). Among others, it visu-
alizes the currently learned automaton (2,4) as well as a
panel for displaying MSCs (3) of runs of the system de-
scribed by the automaton. The user is then asked if she
agrees with the solution and may either stop or introduce a
new counter-example proceeding with the learning proce-
dure.

Smyle and the LearnLib Currently, Smyle, which can be
freely downloaded at http://smyle.in.tum.de, is is
written in Java and makes use of the LearnLib library via
its CORBA interface. Thus, the LearnLib basically used
like a standard library in this case providing learning func-
tionality. The main difference is the the learning function-
ality is not integrated into Smyle at compile time but at run
time. While this requires to have an Internet connection
to the LearnLib’s location, this design choice has several
advantages: Smyle immediately profits from ongoing im-
provements or bug fixes of the learning library—completely
transparent to the user of Smyle. Furthermore, learning of
large systems typically asks for machines with a lot of mem-
ory. Having the LearnLib running remotely shifts this issue
to location that supports the LearnLib and can deal with this
issue in a better manner than the typical user of Smyle on its
local machine.

Smyle and jETI As described above, the current structure
of Smyle is static except of the access of the learning library
which is carried out at run time. For reasons described be-
low, it be interesting, to break-up Smyle’s static design and
move to the jABC/jETI philosophy.

Figure 9

11

Figure 8. Smyle screenshot

References

[1] jabc website. http://www.jabc.de, seen Apr. 2007.
[2] D. Angluin. Learning regular sets from queries and coun-

terexamples. Information and Computation, 2(75):87–106,
1987.

[3] A. Arenas, J. Bicarregui, and T. Margaria. The FMICS
view on the verified software repository. In Proc. Integrated
Design and Process Technology (IDPT), San Diego (USA),
June 26-29 2006. Society for Design and Process Science.

[4] T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raf-
felt, and B. Steffen. On the correspondence between confor-
mance testing and regular inference. In M. Cerioli, editor,
Proc. of 8th Int. Conf. on Fundamental Approaches to Soft-
ware Engineering (FASE’05), volume 3442 of Lecture Notes
in Computer Science, pages 175–189. Springer Verlag, April
4-8 2005.

[5] B. Bollig, J.-P. Katoen, C. Kern, and M. Leucker. Replay-
ing play in and play out: Synthesis of design models from
scenarios by learning. In O. Grumberg and M. Huth, ed-
itors, Proceedings of the 13th International Conference on

Tools and Algorithms for Construction and Analysis of Sys-
tems (TACAS’07), volume 4424 of Lecture Notes in Com-
puter Science, Braga, Portugal, Mar. 2007. Springer.

[6] B. Bollig, C. Kern, M. Schlütter, and V. Stolz. MSCan: A
tool for analyzing MSC specifications. In TACAS 2006, vol-
ume 3920 of Lecture Notes in Computer Science, pages 455–
458. Springer, 2006.

[7] D. Brand and P. Zafiropulo. On communicating finite-state
machines. J. of the ACM, 30(2):323–342, 1983.

[8] Y. Brun and M. D. Ernst. Finding latent code errors via
machine learning over program executions. In Proc. of the
26th Int. Conf. on Software Engineering (ICSE’04), pages
480–490, Edinburgh, Scotland, May 2004.

[9] T. S. Chow. Testing software design modeled by finite-
state machines. IEEE Transactions on Software Engineer-
ing, 4(3):178–187, May 1978.

[10] J. E. Cook, Z. Du, C. Liu, and A. L. Wolf. Discovering
models of behavior for concurrent systems. Technical re-
port, New Mexico State University, Deppartment of Com-
puter Science, August 2002. NMSU-CS-2002-010.

[11] J. E. Cook and A. L. Wolf. Discovering models of software
processes from event-based data. (TOSEM) ACM Transac-

12

Figure 9. Learning Process Modeling Mode: Design of Smyle in jETI

13

tions on Software Engineering and Methodology, 7(3):215–
249, 1998.

[12] C. de la Higuera. A bibliographical study of grammatical
inference. Pattern Recognition, 38:1332–1348, September
2005.

[13] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin.
Quickly detecting relevant program invariants. In Proc. of
22nd Int. Conf. on Software Engineering (ICSE’00), pages
449–458, June 2000.

[14] S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou,
and A. Ghedamsi. Test selection based on finite state
models. IEEE Transactions on Software Engineering.,
17(6):591–603, 1991.

[15] A. Hagerer, H. Hungar, O. Niese, and B. Steffen. Model
generation by moderated regular extrapolation. In H. W.
R. Kutsche, editor, Proc. of the 5th IntĊonfȯn Fundamen-
tal Approaches to Software Engineering (FASE’02), volume
2306 of Lecture Notes in Computer Science, pages 80–95,
Heidelberg, Germany, April 2002. Springer-Verlag.

[16] S. Jörges, C. Kubczak, R. Nagel, T. Margaria, and B. Stef-
fen. Model-driven development with the jABC. In in Proc.
of Haifa Verification Conference 2006 (HVC 2006), LNCS,
Haifa, Israel, October 23-26 2006. IBM, Springer Verlag.
hvc06.

[17] C. Kubczak, B. Steffen, and T. Margaria. The jABC ap-
proach to mediation and choreography. 2nd Semantic Web
Service Challenge Workshop., June 2006.

[18] Y. Lafon. W3c web services activity. http://www.w3.
org/2002/ws/, seen Apr. 2007.

[19] D. Lee and M. Yannakakis. Principles and methods of
testing finite state machines — a survey. Proc. IEEE,
84(8):1090–1126, 1996.

[20] T. Margaria, M. G. Hinchey, H. Raffelt, J. Rash, C. A.
Rouff, and B. Steffen. Completing and adapting models
of biological processes. In Proc. of IFIP Conf. on Biolog-
ically Inspired Cooperative Computing (BiCC 2006), Santi-
ago (Chile), 2006.

[21] T. Margaria, C. Kubczak, M. Njoku, and B. Steffen. Model-
based design of distributed collaborative bioinformatics pro-
cesses in the jabc. In 11th IEEE Int. Conf. on Engineering
of Complex Computer Systems (ICECCS 2006), pages 169–
176, Stanford, CA, August 2006. IEEE CS Press. iccecs-
bio06.

[22] T. Margaria, H. Raffelt, and B. Steffen. Analyzing second-
order effects between optimizations for system-level test-
based model generation. In Proc. of IEEE International Test
Conference (ITC’05). IEEE Computer Society, November
2005.

[23] L. Mariani and M. Pezzè. A technique for verifying
component-based software. In Proc. of Int. Workshop on
Test and Analysis of Component Based Systems (TACoS’04),
pages 17–30, March 2004.

[24] M. Müller-Olm, D. Schmidt, and B. Steffen. Model-
checking: A tutorial introduction. In SAS, 6th InT:
Static Analysis Symposium, LNCS N.1694, pages 330–354.
Springer Verlag, Sept. 1999.

[25] J. W. Nimmer and M. D. Ernst. Automatic generation of
program specifications. In Procȯf the 2002 Int. Symposium
on Software Testing and Analysis (ISSTA’02), pages 229–
239, Rome, Italy, July 22–24, 2002.

[26] B. Nuseibeh and S. Easterbrook. Requirements engineering:
a roadmap. In ICSE 2000, pages 35–46. ACM, 2000.

[27] I. Object Management Group. Omg’s corba website. http:
//www.omg.org/corba/, seen Apr. 2007.

[28] D. Peled, M. Y. Vardi, and M. Yannakakis. Black box
checking. In J. Wu, S. T. Chanson, and Q. Gao, edi-
tors, Proc. of the Joint Int. Conference on Formal Descrip-
tion Techniques for Distributed System and Communica-
tion/Protocols and Protocol Specification, Testing and Ver-
ification FORTE/PSTV ’99:, pages 225–240. Kluwer Aca-
demic Publishers, 1999.

[29] H. Raffelt and B. Steffen. Learnlib: A library for automata
learning and experimentation. In L. Baresi and R. Heckel,
editors, Proc of 9th Int. Conf. on Fundamental Approaches
to Software Engineering (FASE 2006), volume 3922 of Lec-
ture Notes in Computer Science, pages 377–380. Springer,
2006.

[30] Y. N. Shen, F. Lombardi, and A. T. Dahbura. Protocol con-
formance testing using multiple uio sequences. In Proc. of
the 9th Int. Symposium on Protocol Specification, Testing
and Verification, pages 131–143. North-Holland, 1990.

[31] B. Steffen and H. Hungar. Behavior-based model construc-
tion. In S. Mukhopadhyay and L. Zuck, editors, Proc. of the
4th Int. Conf. on Verification, Model Checking, and Abstract
Interpretation (VMCAI’03), volume 2575 of Lecture Notes
in Computer Science, pages 5–19. Springer-Verlag, 2003.

[32] B. Steffen, T. Margaria, and R. Nagel. Remote Integration
and Coordination of Verification Tools in jETI. In Proc. of
12th IEEE Int. Conf. on the Engineering of Computer Based
Systems (ECBS 2005), pages 431–436, Greenbelt (USA),
April 2005. IEEE Computer Soc. Press.

[33] B. Steffen, T. Margaria, H. Raffelt, and O. Niese. Efficient
test-based model generation of legacy systems. In Proc. of
the 9th IEEE Int. Workshop on High Level Design Validation
and Test (HLDVT’04), pages 95–100, Sonoma (CA), USA,
November 2004. IEEE Computer Society Press.

[34] S. Vuong, W. Chan, and M. Ito. The UIOv-method for proto-
col test sequence generation. In J. de Meer, L. Machert, and
W. Effelsberg, editors, Proc. of 2nd Int. Workshop on Pro-
tocol Testing Systems (IWPTS’89), pages 161–175. North-
Holland, 1989.

[35] T. Xie and D. Notkin. Mutually enhancing test generation
and specification inference. In A. Petrenk and A. Ulrich,
editors, Proc. of 3rd Int. Workshop on Formal Approaches
to Testing of Software (FATES’03), volume 2931 of Lecture
Notes in Computer Science, pages 60–69. Springer Verag,
2004.

14

